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Introduction — where is the challenge?




Decision problem

m There is an objective or objectives to be attained

m There are many alternative ways for attaining the objective(s) - they
consititute a set of actions A (alternatives, solutions, objects, acts, ...)

m Questions with respect to set A:

P, . How to choose the best action ?
P; : How to classify actions into pre-defined decision classes ?

Py : How to order actions from the best to the worst ?
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Coping with multiple dimensions in Decision Aiding

= Decision problems P,, P, P, involve vector evaluations of actions

coming from:
= multiple decision makers (voters, group decision)
= multiple evaluation criteria (multiple objectives)

s multiple possible states of the world that imply multiple
consequences of the actions (probabilities of outcomes)



Multi-dimensional decision problems

Social Choice Multiple Criteria | Decision under Risk
(Group Decision) | Decision Aiding and Uncertainty
Element of set A Candidate Action Act
' ' Probabilit
DU Voter Criterion y

' f an m
evaluation space of an outcome

Objective Dominance Dominance Stochastic
information about

comparison of
elements from A

relation relation dominance relation

» The only objective information one can draw from the statement

of a multi-dimensional decision problem is the dominance relation
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Enriching dominance relation — preference modeling/learning

Dominance relation is too poor - it leaves many actions non-comparable

One can ,enrich” the dominance relation, using preference information
elicited from the DM

Preference information is an input to learn/build a preference model

that aggregates the vector evaluations of actions

The preference model induces a preference relation in set A, richer than

the dominance relation (the elements of A become more comparable)

A properexploitation of the preference relation in A leads

to a recommendation in terms of choice, classification or ranking

In this talk, we will consider multiple criteria decision aiding



Aggregation of multiple criteria evaluations — preference models

m Three families of preference modeling (aggregation) methods:

= Multiple Attribute Utility Theory (MAUT) using a value function,
e.g., U(@) = 27:1 w;g;(a), U(a) = Z'Ll u;[gi(@)], Choquet/Sugeno integral
s Outranking methods using an outranking relation S={~U>="“u>*s}
aSb=,ais at least as good as b”

= Decision rule approach using a set of decision rules

e.g., ,If g(a)-r, & gla)-r; & ... g,(a)-r,, then a — Class t or higher”

Af gla)-7"0gi(b) & gia)-7"0g,(b) & ... g,(a)-,"P)g,(b), then aSb”

m Decision rule model is the most general of all three

R. Stowinski, S. Greco, B. Matarazzo: Axiomatization of utility, outranking and decision-rule
preference models for multiple-criteria classification problems under partial inconsistency
with the dominance principle, Control & Cybernetics, 31 (2002) no.4, 1005-1035
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Multiple-criteria approach over mono-criterion approach

m Operations Research was originally focused on mono-criterion

optimization — mathematical programming, MAUT (utility function)

m A decision maker (DM) seldom has a single clear criterion in mind.
Usually, there is no common unit for all scales of criteria, which are
rather heterogeneous, so it may be very difficult to define a priori a

unique criterion able to take into account all relevant points of view

m By making a family of criteria explicit, the multiple-criteria approach
preserves the original concrete meaning of the corresponding
evaluations for each actor, without resorting to any fabricated

conversion (the nightmare of composite indicators)



Von Neumann-Morgenstern utility function

m Experiments show systematic violation of expected utility hypotheses
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Von Neumann-Morgenstern utility function — certainty effect

Typical response

;033 55.000%

=1.0
48.000% < @ 2 48.000%

48.000%

m expected utility function is linear in the probabilities
ul(x?) = p;uxit) + (1-p;) u(x?)
U(48)> 0.33xU(55)+0.66 xU(48) +0.01x0 = 0.34 xU(48)>)0.33 xU(55)

0.33xU(55)+0.67x0 > 0.34 xU(48)+0.66 x 0 = 0.34 x U(48)<)0.33 x U(55)

= Kahneman & Tversky: people tend to overvalue a sure thing
13



Multiple Attribute Utility Theory vs. Multiple Criteria Decision Aiding

Méthodologie
Multicritere
dAide a la Décision

Bernard ROY
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Main sources of imperfect knowledge and ill determination (Roy 1985)

1. Roy’s staring hypothesis was that realistic decision aidiong takes place

in the context of imperfect knowledge and ill determination

2. The decision aiding process is carried out in a real life context
that may not correspond exactly to the model on which

the decision aiding is based (the map is not the territory)

3. The system of values used for evaluating the feasibility
and relative interest of diverse potential actions is usually

fuzzy, incomplete and influenceable

4. Hesitation of the DM, instability of their preferences,
absence of some hardly expressible criteria in the considered family

make that people in their judgments violate dominance

5. Preference information is inconsistent, vague and ambiguous

17



Weak points of the aggregation by utility (value) function (MAUT)

m Utility function distinguishes only 2 possible relations between actions:

preference relation: a>b < U(a) > U(b)
indifference relation: a~b < U(a) = U(b)

m > is asymmetric (antisymmetric and irreflexive) and transitive
m ~ is symmetric, reflexive and transitive

m  Transitivity of indifference is troublesome, e.qg.

= In consequence, a non-zero indifference threshold g; is necessary

®=  An immediate transition from indifference to preference is unrealistic,
so a preference threshold p; > g; and a weak preference relation >
are desirable

=  Another realistic situation which is not modelled by U is incomparability,
so a good model should include also an incomparability relation ,?”

18



Four basic preference relations and an outranking relation S

m Four basic preference relations are: {~, >, >, ?}

preference

a-b asb a~b b>a b>-a

g(a)-p(b) gla)ab) 9148 g(a)+q(a) g(a)+p(a)
m Outranking relation S groups three basic preference relations:
S = {~, >, =} - reflexive and non-transitive
aSb means: ,action a is at least as good as action b”

m For each couple a,beA:
asSb A non bSa < avb v a-b
asSb A bSa < a~b

non aSb A non bSa < a?b




The evolution of MCDA towards Al

m Aggregation of vector evaluations, i.e., preference modeling:

= till early 80's: ,,model-centric”
(model first, then preference info in terms of model parameters)

= since 80’s: more and more ,human-centric”
(PC allowed human-computer interaction — ,trial-an-error”)

= in XXI century: ,knowledge driven”
(more data about human choices;
holistic preference information first, then model building;
explanation of past decisions, and prediction of future decisions;
Al — model and human learn in the loop of interaction)



Elicitation of preference information by the Decision Maker (DM)

m Direct or indirect ?

m Direct elicitation of numerical values of model parameters by DMs
demands much of their cognitive effort

P.C.Fishburn (1967): Methods of Estimating Additive Utilities. Management Science, 13(7),
435-453 (listed and classified twenty-four methods of estimating additive utilities)

Value function model Outranking model

substitution rates or shapes

_ _ weights & discrimination thresholds
of marginal value functions

| _» Cfabp 03 s — A=0.T5
-~ ’/ ’ 4+ .
- - - Ve k| ----- \\
PR - P 7 N
-7 / ’ \\
ourlom== " gi(a) : -gi(b)
e >
0 o B, 0 G P v

aSb < Cla, b) = ZC a,b)>

and g;(b)-g;(a )gv,- for all j
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Elicitation of preference information by the Decision Maker (DM)

m Indirect elicitation: through holistic judgments, i.e., decision examples

m Decision aiding based on decision examples is gaining importance

because:
= Decision examples are relatively ,easy” preference information
m Decisions can also be observed without active participation of DMs

m Psychologists confirm that DMs are more confident exercising their
decisions than explaining them (J.G.March 1978; P.Slovic 1977)

m Related paradigms:

s Revealed preference theory in economics (P.Samuelson 1938),
is @ method of analyzing choices made by individuals: preferences
of consumers can be revealed by their purchasing habits

= Learning from examples in AI/ML (knowledge discovery)

m Conclusion: indirect elicitation of preferences is more user-friendly

22



Indirect elicitation of preference information by the DM

[TIME=24, COST=56, RISK=75] Pairwise
— preferences

[TIME=28, COST=67, RISK=25] between
, — actions
'~ —

characterized
by cardinal
and/or ordinal
features (criteria)

Preference

Learning : >

[MATH=18, PHYS=16, LIT=15] = Class ,MEDIUM” |FSEESIIEELIe)

[MATH=17, PHYS=16, LIT=18] = Class ,,GOOD"” examples
Intensity of
A is preferred to Z more than C is preferred to K prefere?\/ce

Action F should be among 5% of the best ones Rank related
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Ordinal regression paradigm
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Eric Jacquet-Lagreze (1947-2017)

Ordinal regression paradigm (UTA method)

m Ordinal regression paradigm emphasizes the discovery
of intentions expressed through decision examples

preference information

oy U(a):éui[gi(a)]

Z>W

DM X =W analyst Preference model
>y - v > compatible
with preference
us>t ) :
information

Z > U

us>z

Apply the preference model on A

E. Jacquet-Lagreze, J. Siskos: Assessing a set of additive utility functions for multicriteria
decision-making, the UTA method. Europ. J. Operational Research, 10 (1982) 151-164
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UTA additive preference model

Marginal value functions u,(g;)

ui(g1) ?
f.-) - - = -
2 The scale of u; is a conjoint interval scale
f__.f' \ whatever the scale of g;

g, \ @can be found by LP

A n
27 Z (x)]: the value of action x
- g> i=1
having evaluations g;(x), i=1,...,n
n(Gn) ?
;f Criteria are supposed to be independent

with respect to preferences

~ gn
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Example

m Ranking of countries wrt digital economy (quality of information
and technology infrastructure) (Economist Intelligence Unit in 2010)

actions performances
criteria
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Value function reproducing pairwise comparisons is not unique

Compatible value function ranks all countries

while respecting the preference information

Sweden

Denmark

i

UK

Malta

France

2 | [Netherlan |

3 ) (Denmark ] 4,
4

5

UK

([ Malta | ©

[ Germany |

)
J
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)
l
)

B

ulgaria

e

(15) | Kazakh. 0
Ukraine

1) [ Sweden ] Marginal value functions

connectivity

] [ Norway ] 0.16 -
0,12
0,08 1
(_France ] go4

al

25 35 45 55 65 75 85

business environment

Another compatible value function
may rank the countries otherwise

2 | [ Norway ]

3 ][ Sweden | 02

) (Nstheran
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6 |[ Ireland ] o4 |

l
[
(
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(
(
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|
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1

!
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=N

The two rankings are substantially different,
although both reproduce the same preference information
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Robust Ordinal Regression
for value function preference model
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Non-univocal representation - Robust Ordinal Regression - UTAGMS

preference information

n
. U(a) = Zui lg,(a)]
. o * * X=Yy i=1
- Z-W All instances of
° . C: Y:Q\R DM Yy v analyst preference model
. o (r. ze . > .l >  compatible
*\ we U./ Uz with preference
¢ * \x;_f . Z-Uu information

Apply all compatible instances on A

S. Greco, R. Stowinski, J. Figueira, V. Mousseau: Robust ordinal regression. Chapter 9 [in]:

Trends in Multiple Criteria Decision Analysis. Springer, New York, 2010, pp. 241-283
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ROR - possible and necessary preference relations

m The possible preference relation: for all alternatives x,y<€A,

x>y < U(x) = U(y) for at least one compatible value function

(complete and negatively transitive)
m The necessary preference relation: for all alternatives x,y <A,

x =Ny < U(x) = U(y) for all compatible value functions

(partial preorder) x-\Ny = x-Py,

e, ~Nc P
= When there is no preference information:

necessary relation = dominance relation x-Ny or y-Px

for all x,ycA




Non-univocal representation - Robust Ordinal Regression - UTAGMS

Z/ u
X We

preference information

n
U(a) = Zui g, (a)]
i=1
I (.r) .............. ’ —
s
7’ ®
T =
- I
................. asacaian . (IS -:_ -
I ,f = -_: It- ..................... O
() ..................... - - -
Pt .
/ S| e T T g o)
¢ 1 A7
0’_‘_, P S
1 H - 7
f - "__ -
T A
i A
a; Yi Vi Wi Z; Bf
y,V,W,ZcAR

necessary ranking

(partial preorder)
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Non-univocal representation - Robust Ordinal Regression - UTAGMS

additional preference information

—
_’

enriched

necessary ranking
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Recommendation in terms of a necessary ranking - UTAGMS

m Necessary preference relation in the set of countries, obtained by
all additive value functions compatible with preference information
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Robust Ordinal Regression as a constructive learning

m Robust Ordinal Regression works in a loop with incremental
elicitation of preferences — constructive learning

Results are robust, because they take into account
partial preference information

Decision Preference
maker won
Preference
Robustness model
analysis

Set of compatible
preference model

arameters
Necessary and P

possible results
(ranking, sorting)

S. Corrente, S. Greco, M. Kadzinski, R. Stowinski: Robust ordinal regression in preference
learning and ranking. Machine Learning, 93 (2013) 381-422



Checking for the existence of a compatible value function

UTAGMS metho

¢’ =max g, subjectto:
ula*)> ulp*)+ ¢ if a* = b’

ula*)=ulp®) if &~ b’

u,-(x,k)—u,-(x,k‘l)z o, i=1,...,n, k:1,...,m,-(AR)

d

~

If EARis feasible and ¢* > 0, then there exists at least one value function

compatible with the preference information
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Calculating necessary and possible preference relations

m For all pairs of actions a,beA, their performances on criteria
g(a), g/(b) add to m,(AR) characteristic points of marginal value

function u; , i=1,...,n; then EA" becomes E(a,b)
m Consider constraints:

U(b)Ez( 5(5))+ g } EN(a, b) U(a) > Lljo(b) } EP(a, b)

m The necessary and the possible preference relations (LP problems):
ar"b<if EN(a,b) infeasibleor £"(a, b)=maxze, s.t.EV(a, b) is<0

ar"b<if EP(a,b) feasibleand £”(a, b)=maxe, s.t.EP(a,b) is>0
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When the adopted value function fails to represent preferences...

If for a given preference information there is no compatible value

function, the user can:

m identify and eliminate ,troublesome” pieces of preference information

(Mousseau et al. 2003),

m continue to use ,not completely compatible” set of value functions

with an acceptable approximation error

m augment the complexity of the value function, i.e., pass from
additive value function to Choquet integral or augmented additive

value function taking into account interactions between criteria

S. Greco, V. Mousseau, R. Stowinski: UTAGMS-INT: robust ordinal regression of value functions
handling interacting criteria. EJOR, 239 (2014) 711-730.
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Extreme ranking analysis
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Extreme ranking analysis

m Collate each action with all the remaining actions jointly

m Compute the highest and the lowest ranks and scores

the highest P*(a) rank P:(a) the lowest
[_Poland | assume that a is ranked L_Sweden |

Sweden ) | in the top in the bottom ~ LNetherlan |
UK
[ Netherlan ] identify minimal subset of alternatives that are simultaneously [ N ]
orway
UK not worse than a not better than a
[ Norway ] i.e., solve the following MILP problems LGermany |
Malta
[ Germany | Minimize: L2 = Z v Minimize : fP%° = Z v [ ]
CmaR T e aay b 7 Jmin bEAay P Ireland_)
[ Malita Ula) =UWb)—M -vy, for all bE A\{a} Ub)>U(a)-M -v, Turkey
[ Ireland | E(AR) E(AR)
Turkey
read off the extreme ranks Kazakh.
, UKraine
Kazakh. P*(a)= [P +1 P.(a) = |A| - £

M. Kadzinski, S. Greco, R. Stowinski: Extreme ranking analysis in robust ordinal regression.
OMEGA, 40 (2012) 488-501




Extreme ranking analysis

Narrow ranges (Bulgaria) vs. wide ranges (UK)
Interactive specification of new pairwise comparisons,
e.g., (UK, Ireland), (Poland, Slovakia)

Choice of the best actions, e.g., BEST = {acA: P*(a)=1}
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Stochastic ordinal regression
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Stochastic Multiobjective Acceptability Analysis & ROR = SOR

= When the necessary preference relation ="V is poor, it leaves many
pairs of alternatives incomparable, i.e., a-*b and b-Fa

= The number of compatible value functions constrained by available
preference information is infinite

m One can sample these compatible value functions within the constraints
and check the frequency with which:

m a-b - pairwise winning index p(a,b),
m a gets position i in the ranking — rank acceptability index b’,

m The sampling is performed using the Hit and Run algorithm (Smith 1984)
(Monte Carlo simulation)

43



Stochastic Multiobjective Acceptability Analysis & ROR — SOR

necessary preference relation extreme ranks
? b P'(a)=1 P.(a)=3

@ >

J
—_— 0.2 S
=0l
08 015

pairwise winning indices rank acceptability indices

a |

M. Kadzinski, T. Tervonen, Stochastic ordinal regression for multiple criteria sorting,
Decision Support Systems, 55(1), 55-66, 2013

S. Corrente, S. Greco, M. Kadzinski, R. Stowinski: Inducing probability distributions on
the set of value functions by Subjective Stochastic Ordinal Regression. Knowledge

Based Systems, 112 (2016) 26-36



Robust Ordinal Regression for hierarchy of criteria
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Multiple Criteria Hierarchy Process (MCHP)

root criterion

1st level criteria

1Gay Il Gua Jd G | {Geu I Gz | Ane =yl angere
{9(1,1,1) {9(1,2,1): {9(1,3,1): {9(2,1,1): {9(2,2,1):
\ \ \ \ \ elementary criteria
{9(1,1,2) ) {9(1,2,2) ) {9(1,3,2) ) {9(2,1,2) ) {9(2,2,2) )
1 9(1,2,3) 9213
N | T 1A | S | N

@ @ @ @ @ @ @ @ alternatives/actions

_____________________________________________________________________________________

S. Corrente, S. Greco, R. Stowinski: Multiple Criteria Hierarchy Process in Robust Ordinal
Regression. Decision Support Systems, 53 (2012) 660-674
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Multiple Criteria Hierarchy Process (MCHP) — main idea

» We wish to consider
preference relation >,

in each node of

the hierarchy tree, ) "
a =(2) b < U(Z)(a) 2 U(Z)(b) 91,1,2) ] ‘[9(1,2,2) ] 9(1,3,2) ] ‘[9(2 1,2) ] 92,2,2) ]
C=1,3d & Upyz(c)2Ugy3(d) q T @ x 7

e N7 M SORCRORONORGRORO

S. Corrente, S. Greco, R. Stowinski: Multiple Criteria Hierarchy Process in Robust Ordinal
Regression. Decision Support Systems, 53 (2012) 660-674
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MCHP with additive value function - preference elicitation & ROR

m Indirect preference information in particular nodes of the tree:

» Pairwise comparison: a is at least as good as b on criterion G,
a-b < U.a)=U.(b)

» Intensity of preference: considering criterion G, or g,

a is preferred to b at least as much as c is preferred to d
(@ b)=(c,d) & U(a)-U,(b) 2 U(c)-U,(d)
(@ b)=tlc,d) & ue(a)-u(b) 2 uec) - ue(d)
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Properties of necessary and possible preference relations in node r

= Given two alternatives a,beA, and any non-elementary criterion G,:
(i) a=@b forallj=1,..,n@F) = a='b

(i) a= b forallj=1,..,n(), j=w, and a=; b = axcb

not(a zfr,j)b) forall j = 1,...,n(r) = not(a sz)

(iif) @

a tfb = a gfr,j)b for atleastone j e {1,---,”(|‘)}

Remark: hierarchical properties are expressed in terms of preference
> necessary (/)

> necessary & possible (i)

» possible (iii)

52



Multiple Criteria Hierarchy Process (MCHP) - value function & ROR

m Other developments in MCHP for value function and ROR:

s Choquet integral value function

s Choquet integral value function and Stochastic Ordinal Regression

s MCHP for sorting problems with additive value functions

S. Angilella, S. Corrente, S. Greco, R. Stowinski: Robust Ordinal Regression and Stochastic
Multiobjective Acceptability Analysis in Multiple Criteria Hierarchy Process for the Choquet
integral preference model. OMEGA, 63 (2016) 154-169
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Robust Ordinal Regression
for outranking relation preference model
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Robust Ordinal Regression approach for outranking methods

m Concordance test: checks if the coalition of criteria concordant with
the hypothesis aSb is strong enough:

a,be A, w;areweights of criteria

P, 9 0 g/(@)-gi(b)
m Concordance test is positive if: C(a,b)>\ ,
where Ae[0.5, 1] is a cutting level (concordance threshold)

m No compensation between criteria because the weights are not
multiplied by performances (weight w; is a voting power of g;)
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Robust Ordinal Regression approach for outranking methods

m Discordance test: checks if among criteria discordant with the
hypothesis aSb there is a strong opposition against aSb:

e gi(b) - g(a) > v; (for gain-type criterion)
e gi(a) - g/(b) >v; (for cost-type criterion)

m Conclusion: asSb is true if and only if C(a,b)>1 and there is no criterion
strongly opposed (making veto) to the hypothesis

m For each couple (a,b)eAxA, one obtains relation S: true (1) or false (0)

S|la|b|c|d]|e
al|l1|{0f|1(|1]1
b|(1|1(1|1]0
c|0|0O|J1]|]0(1 I—>
d|{0|0|0]|1]0O
e|0|0|1]|0]1
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Robust Ordinal Regression approach for outranking methods

= Assuming 27:1 w; =1, we have C(a,b)= 27:1 w,Ci(a,b)=>""  ¥(a,b)

i=1
where ¥;(a, b) is a non-decreasing function of g,(a)-g,(b)

0 : >
0 gi(a)-gi(b)
%(ﬁi! af)
0 : : : >
-Pi -g; 0 gi(a)-gi(b)

where o, are, respectively, the worst and the best possible
performance on criterion g;, i=1,...,n
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Robust Ordinal Regression approach for outranking methods

m Preference information provided by the DM (ELECTREGKMS):

asSb or asc<b, for a,becARcC A

[g.., ] - the range of indifference threshold allowed by the DM

[pi., pi*] - the range of preference threshold allowed by the DM

S. Greco, M. Kadzinski, V. Mousseau, R. Stowinski: ELECTREGKMS: Robust ordinal regression

for outranking methods. Decision Support Systems, 52 (2011) 118-135
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Robust Ordinal Regression approach for outranking methods

m Compatible outranking model is a set of marginal concordance

functions ¥(a,b), cutting levels 2, indifference g;, preference p,,

and veto thresholds v, i=1,...,n, reproducing the DM’s preference

information concerning pairs (a,b) e ARxAR

Fi(a,b)

Fil ) 17" FEeee [ e S remeeeeaeeeneeananens
: ..'___,,‘.‘..f. .......... JI .....................

T B :
T JUUTC SRR S R —

.--" eetet’ !

e e : :

0 -o' . : : >
-p,i* p,m -q;* -qia* 0 g!(a)_g!(b)
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Robust ordinal regression approach for outranking methods

R
= Ordinal regression (compatibility) constraints EA :

If aSb for (a,b) eARxAR: \

asb
n
=Y ¥ > concordance test (+)
Cla,b)=>. ,¥la b)>x > nee
gi(b)-g;@+e<v;, i=1,..,n discordance test (+)
J
If aS<b for (a,b) eARxAR: \
n ascb
Cla, b) = Dy ¥i(a,b)+e <A+ Mgy(a,b) concordance test (=)
- or
gi(b)-g;(@)=v; -8M,(a,b), i=1,...,n » discordance test (-)
M;(a,b)e{0,1}, i=0,1,...,n
Z;?:o M;(a,b) < n, where § is abiggiven value

0.5<n<1,
v, > p; +g, |If [p,-*,p,’-"] was given

vi > g;(b)-g;@+e, Vv;>g;@)-gib)+e if a~p was given, ie{l,...,n}
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Robust Ordinal Regression approach for outranking methods

m  Given a pair of alternatives a,beA, a necessarily outranks b:
asb < ¢ <0

where &£" = max ¢

subject to:

2 ‘

Cla, b) = Zi ¥i(a,b)+e<r+Mo(a,b) £ )
gi(b)-gi@) = v; - sM;(a,b)

M;(a,b) {0, 1}, e, N, ZfzoM,-(a,b)sn

m If & <0 and constraints EN(a,b) are infeasible,
then a outranks b for all compatible outranking models

(aS"b because aSNb is not possible)
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Exploitation of outranking relations SV, S¢V, SP, S¢? in set A

m Choice problem:

Kernel of the necessary outranking graph SV

Ranking problem:

Exploitation of the necessary outranking graph including SN and SV
using Net Flow Score procedure for each alternative xeA:

NFS(x) = strength(x) — weakness(x)

SN — positive argument, SV - negative argument

(+:-) (+,+)

|
weakness of x ‘ |
\ SCN f

| strength of x
l SCNIII

(--) (=+)
Ranking: complete preorder determined by NFS(x) in A
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Robust Ordinal Regression approach for outranking methods
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=OEHEEREEEE
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NFS ranking
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Robust Ordinal Regression
for decision rule preference model
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Syntax of monotonic decision rules

é)lgi?igl if Xg1=g1Fg1 @Nd X o=l o @Nd ... Xop=0.F 00, then x — class t or better
cation | j
If Xg1=g1rq1 @Nd X =0l go @Nd ... X ,=,1 05 then x — class t or worse

choice f'f >h(g1) d >h(g2) d >h(gp) th S
cardinal | o s .
criteria | If (X =159V y) and (x =,,5"9%) y) and ... (x =,,="%P) y), then xS¢y
choice . - )
ranking | if | Xg1=g1rg1 & ¥Yg1=g1l g1 & - Xgp=gplgp 8 Vgp=gpl gpr then xSy
ordinal

. . / 4 7/
criteria | /T | Xg1=g17q1 8 Vg1=g1F g1 | & oo Xgp=gplgp & Vopmgplgp, then xSy

i

pair of objects x,y evaluated on criterion g,

S.Greco, B.Matarazzo, R.Stowinski: Decision rule approach. Chapter 13 [in]: Multiple
Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 2016, pp. 497-552
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Dominance-based Rough Set Approach (DRSA)

Classes:A ~ @ >~ H

A

40

20

Co

bipolarity

Lower approximation

‘at least’ class A Zd(zl'g;e\f:’_;g(‘;vg?k
t A Upper approximation

————

‘at least’ class A

.—. -------------------- Upper approximation

‘at most’ class @
Lower approximation

20 ¢, atmost’ class @

Dominance principle (comonotonicity)

If x is at least as good as y with respect to relevant criteria,

then x should be assigned to a class not worse than y

Z. Pawlak, Rough sets. Int. J. of Computer & Information Sciences, 11 (1982) 341-356

S. Greco, B. Matarazzo, R. Stowinski: Rough sets theory for multicriteria decision analysis.

EJOR, 129 (2001) 1-47
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Preference modeling by dominance-based decision rules

= Dominance-based ,if..., then...” decision rules are the only
aggregation operators that:

m give account of most complex interactions among attributes,
= are non-compensatory,

m accept ordinal evaluation scales and do not convert ordinal
evaluations into cardinal ones,

m Rules identify values that drive DM’s decisions — each rule is a
scenario of a causal relationship between evaluations on a subset
of attributes and a comprehensive judgment
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Example

Sample of 8 actions submitted to evaluation of the DM

action fi fo DM
X4 2 14
X5 3 12
X3 5 9
X4 7 8
Xc 8 7
Xg 11 6
X7 9 10
Xg 10 11

f—>min
N

14+ =

12+

101

I I
4 6 8 10 12 14 fi—>min
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Example

Sample of 8 actions — elicitation of preferences by the DM

action fi fo DM
X1 2 14 | bad
X5 3 12 bad
X3 5 9 good
X4 7 8 | good
Xs 8 7 | good
Xe 11 6 bad
X7 9 10 bad
Xg 10 11 | good

f—>min
N

14+ =

® - good action
m - bad action

| | | | | | | | N

rFrrrrrrrr-rr1rr
8 10 12 14 f;—>min
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Example

Sample of 8 actions — dominance-based rough approximations

action fi fo DM
Xq 2 14 | bad
X5 3 12 bad
X3 5 9 good
X4 7 8 | good
Xs 8 7 | good
Xe 11 6 bad
X7 9 10 bad
Xg 10 11 | good

f>—>min
/ H
3 X Lower appx
14— ‘.7.-._1. """""""
| i of ,bad”
| yXo .
T "X} Upper appx
10- .- of ,bad
X~ H]
I B ) 4 i
8- X3l . o
5 X4 -9 X
6 X5 i e
T Lower appx !
4 of ,good” 1
- | .Upper appx
] i : of ,good”
] ] ] ] ] ] E ] :I ] ] ] ] N
I

| I I N -

2 4 6 8 10 12 14 fi—min

80



Example

Sample of 8 actions - induction of certain decision rules

DA
7"2 .

if f,(x)>11, then x is certainly bad
if f,(x)=12, then x is certainly bad
Do 73t if £i(x)<8 & f£,(x)<9, then x is certainly good

f—>min
action | fi | fo DM 142 X ?
X, 2 | 14 | bad 1 ik y
120l L 22l L L L L
X 3 12 bad 1 .XB:/
X3 5 9 | good or DT i 7
Xs 7 3 good 8:////-/7)(3/1-/7?1 % r
7 8 | 7 | good 6] " : 7
Xe 11 6 bad 4: 3 /: i?
I by
X7 9 10 | bad > P ?
Xg 10 11 | good e é :
0 "2 4 6 8 10 12 14 fiomin

supported by {xg}
supported by {x;,x5}
supported by {x5,x,,Xs}
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Example

Sample of 8 actions - induction of possible decision rules

f—>min
action DM 1 Y
fi f2 141l . X4 f
Xq 2 14 | bad + %, Ts ?
124 4
x5 3 | 12 | bad | I . X
Vissiee f/;//////////
X3 5 9 good 10:_.. Ldodd LA . X7§/§ .
YA
Xy 7 8 | good 8+ 3 e U !
41 X4 o /; Xg
Xs 8 7 | good 61 Xs if R
7. 11 | 6 | bad Al "o jg
X7 9 10 | bad T Y/
Xg 10 | 11 | good 1 -
LA S
O rFr -ttt 117 1T 1T 17 T - .
2 4 6 8 10 12 14 fi—>min
D rnt if f1;(x)=9, then x is possibly bad supported by {xg,Xx7,Xs}
= | r: if f,(x)=10, then x is possibly bad supported by {x;,X5,X5,Xg}

DE{ 1o if f1(X)<10 & f,(x)<11, then x is possibly good supported by {x3,x4,Xs5,X7,Xg}
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Examples of applications
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: : b Children’s Hospital of Eastern Ontario
Mobile Emergency Triage System C* - Centre hospitalier pour enfants de I'est de 'Ontario

m Total pediatric population
>400,000

55,000 patient visits in the
ER per year

3 pediatric general surgeons
(supported by emergency
physicians and residents)

P —— N
b o %

i , @
! : i
= et

e e
oy
Creo 1%

—

TREATMENT AREA
AIRE DE TRAITEMENT




Triage Process

Emergency Room (ER) Hospital/Clinic
I Resuscitation Immediate
II  Emergent < 15 min. Observation/Clinic .
................... Observann
III  Urgent < 30 min.
IV  Less Urgent <1 hour
Vv Non Urgent < 2 hours
Prioritizati Di iti E inati : .
rioritization ~ ISsposition ~ Xamination
(Triage nurse) "|  (ED Physician) - (Specialist) Surgery
Consult :
\ 4
............. decccech Discharge
Discharge
Triage Diagnosis and treatment
Management
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I Site of pain: ELQ
Curat. of pain: 12.5 hts
Twpe of pain: Interrnit.
& Shifting of pain: Yes

i Previous visit: Mo
Yomiting: Yes

Doe, John[E]|
=

MET System - scrotal pain triage

ScrotalPain

=10l x|

Application
Chang, Carl
> History
Site of pain: Both
[]Lett
[ | MNone
[ | Right

Onsetof pain: ] Acute [ | Gradual

Type of pain: |:| Constant
Intermittent

Vomiting: ] vYes [ | Mo

> Physical Examination

Cord palpable: [ ] Abnormal [ ] Mormal

Cremast reflex. [ | ves ] Mo

Lie: | Transverse

Testis tenderness:

[ | UpperPFaole

Entire Testis || Mot Tender
[ | Posterior [ ] Tender Mot Specific

Temperature: Celsius

Swelling: [ | Bath ] Left

[ I Mone [ ] Right

> Tests

WBCIHPF:

|| {lﬁlj Fatients list ||| éD Synchranize |

m Doe, John[5]

Temperature

X |

L

m Doe, John[5]

I Site of pain: RLGQ
Durat. of pain: 12.5 hrs 3
Tvpe of pain: Intermit.

Type of Pain

[ Constant
™ Intermittent

v

(D)
(a)(8)
(18

(Del)(0)
Cancel

=
el “°

E

i

Discharge: [l
Observation: |

Consult: [N trong

m Doe, John[5] :

Suggested: Consult {strong) |1| [
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Auto loan fraud detection using dominance-based rough set approach

m Bank data: 26 187 observations including 405 fraud events

m  Accuracy of models compared:

Model Class fraud Class non-fraud G-mean [%]
detection rate |%] detection rate [%]

DRSA-BRE 82.56 80.81

Random Forest 18.19 99.98 42.62

SVM 13.9 99.94 37.26

m  Examples of meaningful rules:

#1: if (NUMBER OF INSTALMENTS = 60) and (CAR PRICE > 55320) and
(DOWNPAYMENT TO CAR PRICE < 0.1) and (ANNUAL TURNOVER LAST
YEAR > 198000) and (COMPANY AGE < 2), then fraud

#10: if (DOWNPAYMENT TO CAR PRICE = 0.1) and (LEGAL FORM group = capital
company) and (COMPANY AGE < 6) and (PKD group = building), then fraud

J. Btaszczynski, A.T. de Almeida Filho, A. Matuszyk, M. Szelgg, R. Stowinski: Auto loan fraud
detection using dominance-based rough set approach versus machine learning methods.
Expert Systems with Applications, 163 (2021) 113740
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Auto loan fraud detection using dominance-based rough set approach
Importance of attributes in terms of attribute Bayesian confirmation

88

- 1 uondes gMd

L D uonoss OMd

-7 uonoes gMd

rS13ISSY L3N

L Jsoue|eal dnoib NHOL TvO31

r 31DIHIA 4O IdAL

- S33A0TdNT 40 3NN

FH04 H3WOoLsSND

FAVIA LSV IWNOOINI TVNNNY

- @ uonoes gmd

F I\ uonaes Od

L Auedwoos jeuostad dnoib WHO4 YOI
- d uonoas gyd

- 30Idd "vD OL LNIJWAYANAMOA
- O uonoss OMd

-9 uonaes OMd

- D uonoes gmd

- uoloes dMd

L uoneonpa dnoib qyd

- diysssupred [ dnoib WyO 4 TvoO I
FS1S0OD TVNNNY

L seoinses dnoib OMd

F SINIWTVYLSNI 40 43dWNN

- 3OV ANVdNOD

- INOHd

- H uondes gmd

- N uonoas gd

F39v 31D2IHIA

L g uonses OMd

FHY3IA LSV HIAONENL TWNNNY
SIAE!

- uononpoud dnolb qMd

L 3 uonoes OMd

- 30Idd "vD OL INTIVA TvNaIis3d
F N uondes gmd

L ajes dnoib gsd

FNOI93Y

F3H0439 4IWOLSND YIHLIHM
F ¥ uonoes gxd

- Buip|ing dnoJb axd

- Auedwoo jeydeo dnoib HO4 VO3
F30Idd ¥vD

Ly uonoses OMd

L 4 uonoas gyd

- | uonoes gxd

LM uonoaes Md

L g uonoes OMd

- Jeyo dnaib WHO 4 TvD I
-3Sv31 40 3dAL




Customer churn prediction using monotonic rules

m  VC-DRSA performing sequential covering adapted to missing values
was applied on a set of 10 000 customers (7963 exited, 2037 loyal)

Table 2: Comparison of avg. classification accuracy (%) in 10 x 10-fold cross-validation

Yomv | DY | D5 §f C14.5 | NB | SVM | RF MP | RIPP || OLM | OSDL | MoNGEL
0 (5.89 | 75.89 | 75.39 | 75.98 | 70.01 | 77.05 | 75.86 | 76.52 || 57.38 | 73.74 69.79
5 (.01 | 7AS2 § TH.AT | TH.HT | 69.49 | 76.05 | 74.09 | 74.52 || 53.41 | 71.63 08.78
10 73.95 | 73.39 § 74.90 | 7449 | 68.20 | 747H | 7296 | 72.55 || 51.04 | 70.15 66.11
15 73.03 | 7L 7354 | 74.08 | 68.03 | 7427 | 7185 | 70.17 || 50.24 | 68.79 65.19
20 (215 | 7098 § 72.93 | 73.72 | 66.84 | 74.04 | 70.73 | 69.93 | 50.18 | 67.82 64.10
25 7072 1 69.92 § 72.09 | 72.50 | 66.02 | 72.92 | 69.24 | 69.14 || 50.00 | 66.56 62.26

Table 7: Top rules induced by e-VC-DRSA

ID | Conditions Decision ; Support

98 | CreditScore < 712, Age > 5H1. IsActiveMember < 0 FEaxited =1 | 0.005 2641

91 | NumOfProducts ¢ > 3, CreditScore < 789, Age > 3 FEaxited =1 | 0.003 221

108 | Age > 19, IsActiveMember < 0, CreditScore < 657, Faited =1 | 0.005 172
HasCrCard — 1

111 | Age > 46, IsActiveMember < 0, Geography — Germany, FErited =1 | 0.003 171
NumOfProducts g < 1, CreditScore < 805

97 | Age > 54, IsActiveMember < 0, EstimatedSalary < 123646.57 | Exited =1 | 0.002 155

M. Szelgag, R. Stowinski, Customer churn analytics using monotonic rules.
Proc. PP-RAI'2023, £6dz 2023



Multiobjective Optimization

— Min (or Max)

where x=[x4,...,x,] - vector of decision variables (continuous/integer)
fi(x), j=1,..,n - real-valued objective functions
g/(x), i=1,...,m - real-valued functions of the constraints
b, i=1,...,m - constant RHS of the constraints



Evolutionary Multiobjective Optimization (EMO)

MOCO problems are NP-hard, #P-hard — intractable

1,200 P o . ,
p . Even if single-objective problem is polynomially solvable,
2 ‘. the multiobjective problem is usually NP-hard, e.qg.:
1,000 % * » spanning tree
N * * .
Y . ¢ . » min-cost flow
&1“ . (Ehrgott & Gandibleux 2000)
0,800 . :
5'1 Iterations
y | 2
lﬂ_‘ * 50
0,600 ‘on * = 100
Ay K . 200
A omy . 4300
0,400 v
» L &
A *
A 2
|
A
B
0,200 g
A
Ao m
A |
0,000 . . . . i .
0,000 0,200 0,400 0,600 0,800 1,000 f, 1,200
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Multiobjective Optimization - ,most preferred” solution
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From preference model to ranking of solutions in a population

Preference pressure in the recombination procedure

m Mating selection, crossover and mutation in generation ¢t:
= 1L i I 1) | choose better of 2 individualsi®>| 1100101010
0g ! L i I,(2)] choose better of 2 individualsi [ 1 011101110
cg ! |13 : L3
ERCIE % o | Lo %
oc 11| i |1
U— 9—) | 3 © : 8 p(5) 7,
v . 1 I }
;q&_) ! E iy 11001,701;1,0
S 1% 1011102010
R TS | .
I39 | p(30)
parents P, 1100101100

p(+) is a permutation of {1,...,30}

1011111010

offspring population Q;
with 30 individuals
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The NSGA-II framework

m NSGA-II: dominance ranking of solutions from a current population

Within the same front, order

o—© @® NSGA-II the solutions with respect
to the crowding distance
® ‘/>. A
fl o
*
o —>@ o "
@
. Cuboid
PP = =l ﬂl o
[ le
.. P 1
i+1 ®
f

K. Deb, S. Agrawal, A. Pratap, T. Meyarivan: A fast and elitist multi-objective genetic
algorithm: NSGA-IIL. IEEE Trans. Evolutionary Computations, 6 (2002) 182-97



XIMEA-DRSA: Interactive EMO driven by decision rules

Classification
of some solutions

DeCISIOI‘ Preference information Inferc?nce
Maker ‘eng/ne
3
In successive iterations @ If..., then...

the user learns & < decision rules

the model learns B
3
o
S
@

Sample of so/utions' Optimizer

S. Corrente, S. Greco, B. Matarazzo, R. Stowinski: Explainable Interactive Evolutionary

Multiobjective Optimization, OMEGA, 122 (2024) 102925 55



Example of preference information and preference model

Sample of 8 actions - induction of certain decision rules

action fi fo DM
Xq 2 14 | bad
X5 3 12 bad
X3 5 9 good
X4 7 8 | good
Xs 8 7 | good
Xe 11 6 bad
X7 9 10 bad
Xg 10 11 | good

DA
7"2 .

f—>min

14 o™ . g

12 L Ll Kol LLLLLLLL LG L L.

1 <8

101 X i;

e Yy A

4 X4 /% L

61 x5i W

1 . % \/

44 3 : V

i Y
At

L 2 4 6 8 10 12 14 fi—>min

if f,(x)>11, then x is certainly bad
if f,(x)=12, then x is certainly bad
Do 73t if £i(x)<8 & f£,(x)<9, then x is certainly good

supported by {xg}
supported by {x;,x5}
supported by {x5,X4,X5}
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Example of preference information and preference model

Sample of 8 actions - induction of possible decision rules

f—>min
action DM 1 Y
fi f2 141l . X4 f
Xq 2 14 | bad + %, Ts ?
124 4
x5 3 | 12 | bad | I . X
Vissiee f/;//////////
X3 5 9 good 10:_.. Ldodd LA . X7§/§ .
YA
Xy 7 8 | good 8+ 3 e U !
41 X4 o /; Xg
Xs 8 7 | good 61 Xs if R
7. 11 | 6 | bad Al "o jg
X7 9 10 | bad T Y/
Xg 10 | 11 | good 1 -
LA S
O rFr -ttt 117 1T 1T 17 T - .
2 4 6 8 10 12 14 fi—>min
D rnt if f1;(x)=9, then x is possibly bad supported by {xg,Xx7,Xs}
= | r: if f,(x)=10, then x is possibly bad supported by {x;,X5,X5,Xg}

DE{ 1o if f1(X)<10 & f,(x)<11, then x is possibly good supported by {x3,x4,Xs5,X7,Xg}
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XIMEA-DRSA: Interactive EMO driven by decision rules

. Assign solutions to ordered non-dominated fronts NDF;, ..., NDFy, ...

. Inside the same non-dominated front:
a) Calculate for each solution x the score

score(x) = Yrep. ) e Y(t—age(r)) _ Y rep. () e~ Y(t—age())

where D.(x) - the set of rules of type D, matching x (good rules),
D.(x) - the set of rules of type D. matching x (bad rules)

b) Order solutions in each NDF, from the highest to the lowest score(x)

t - iteration, 7 - rule .3_>.3 5@
age(r) - the iteration in which rule 7 was born .
>( - coefficient of the aging speed o
Y 1 ging sp o' 2@
X" such that: -
NDF, — )% x'U--Ux!=NDF, P —@

z
X score(x)) > --- > score(x!)

S. Corrente, S. Greco, B. Matarazzo, R. Stowinski: Explainable Interactive Evolutionary
Multiobjective Optimization, OMEGA, 122 (2024) 102925



From preference model to ranking of solutions in a population

Preference pressure in the recombination procedure

m Mating selection, crossover and mutation in generation ¢t:

I
Front 1 I,
13

I (1y| choose better of 2 individualsi2>| 1100101010
I,(2)| choose better of 2 individualsi © [ {1 011101110

I3

Loca) ——_crossover L_——

I
Front 2{ 1451 I —
11001011150
1011101010

e [ 1 —Lmutaton L—
30 p(30)

parents P, 1100101100
1011111010

of pairs

tournament

p(:) is a permutation of {1,...,30}

offspring population Q;
with 30 individuals
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From preference model to ranking of solutions in a population

m Selection of new population P, :

| .S.orting .of 60 score(x)
| individuals into NDFs ordering of F, Py
F, T —— AN
P, S | A S —
30 E> Fy ! 30|
|
Qe | = rejected
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DTLZ1-5D: U(x)=max{w,xf;(x) ,..., wsxf (x)} — min

W1 Wo W3 Wp | Ws

DTLZ2-5D Cheb. | 0.1 | 0.15 | 0.2 {0.25| 0.3
(extreme 1)

DTLZ1-50 Extreme 1
011 I I

I
—EAUVF

— XIMEA 810
o —— XIMEA &2 ]
Optimum

009 - NEMOICh

008~ 5
5
w 007 - —
fis
E
iz -
=
a
=
5 005 —
O

0.04 — —

003 i . i

L\”'\“"’\—f\w-f\_ﬂ_n_,__,\ P ;
B e R e AT IR e
002 -
0.0 | | | | | | | |
200 260 300 350 400 450 500 550 GO0 a0
Generations
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Convergence Indicator

250 items: U(X)=min{w;xz,;(X)—a, w,xz,(X)—a} — max

8000

7500

7000

——

— XIMEA
— — —EA-UVF

e i Best Utility | |

Best Utility Last Generation

- XIMEA  :9208.1
- EA-UVF: 91437

Best Utility: 9302

Multi-objective Knapsack Problem with 250 items

l

100 200 300 400 500 600
Generation
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XIMEA-DRSA: the explainability issue

m Consider the 2D knapsack problem with 100 items, w,! = (1,1),
and a=3200
m The DM is asked every 25 iterations to classify 6 current solutions
into good or bad class
m From this preference information, decision rules are induced to explain
the judgments of the DM
m To show how XIMEA-DRSA explains the DM judgments, let’s consider
iterations no.: 1, 101, and 576
m Reference solutions:
Iteration 1 Iteration 101 Iteration 576
Sol fi(-) fo(-) Classification Sol fi(-) fof-) Classificaiton Sol fi(-) fof-) Classification
xt 2008 3002 good x1%1 3749 3863 bad X370 3828 3827 good
x5 3048 2906 good xi’t 3851 3786 bad x5 3048 3758 bad
xi 2800 2991 good xi%1 3762 3853 bad x3™® 3879 3784 bad
x. 3042 2868 bad xi°1 3816 3809 good x37% 3714 3884 bad
x: 2947 2803 bad x:%1 3790 3837 good x:7® 3804 3833 bad
x; 3012 2769 bad x:%1 3829 3799 good x;® 3831 3818 bad

S. Corrente, S. Greco, B. Matarazzo,
Multiobjective Optimization, OMEGA, 122 (2024) 102925

R. Stowinski: Explainable Interactive Evolutionary
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XIMEA-DRSA: the explainability issue

m DRSA decision rules induced after the 1st iteration, shown to DM:
e rule 1_1: If f;(x) > 3048, then x is good (supported by x3),
e rule 2_1: If f5(x) > 2906, then x is good (supported by x7, x3 and x1),
e rule 3 1: If fo(x) < 2868, then x is bad (supported by x3, xi and x;).

4280

m Decision rules are using
reduced number of objectives .
and are not anonymous h "'--.\ “rule1 101

= While being transparent and T
intelligible, the rules used in
optimization are also traceable

3480

m Reflecting on the decision rules,

the DM learns her preferences 1
= Kahneman'’s fast and slow ’
thinking: rules support slow 0
learning of preferences expressed
if]t:L]iti\/fEl\/ t)\/ 'FfifSt: ija(:iESiC)r]f5 ”‘:AHUU 1200 1400 1600 1800 4000 4200 4400

1
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XIMEA-DRSA: the explainability issue

m Good decision rules induced after the 101st and 576t iteration:
e rule 1_101:|If f,(x) > 3816 and fy(x) = 3809, then x is good |(supported by x;**)

e rule 2.101: If f;(x) > 3790 and f2(x) > 3837, then x is good (supported by x1%)
e rule 3_101: If f,(x) > 3829 and f,(x) = 3799, then x is good (supported by x:°')
(%) (

e rule 1 576:|If f;(x) > 3828 and f3(x) > 3827, then x is good |(supported by x77°)

4280 4000

4080 1950

i — rule 1 _101
\ rule 1 _101
3880 T 3900
oo rule 1 576
] e . A

3680 3850 %
el o \ —- T
= - f - ®

3480 3800 / ) R

. s
- 8 n-d solutions ¢
3280 1 3750
L]
3080 3700
rule 2_1
2820 3650
3000 1200 1400 1600 1800 4000 4200 4400 3750 3800 3850 3900 3950
1 fl
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XIMEA-DRSA: the explainability issue

m Decision rules used to assign a score to the considered solutions
induced from classification decisions provided up to iteration 600:
If f1(x)>=3799 and f5(x) = 3828, then x is good (born(rule1 600)=126)

If f1(x)>3841 and f5(x) = 3813, then x is good (born(rule 2_.600) =151)

rule 1 600:
rule 2 600:

rule 3_600:

rule 4 600:

rule 5 600:

If £, (x

(
(

If f1(x) = 3805 and f5(x) = 3820, then x is good
(

> 3808 and fo(x) = 3819, then x is good

rule 6 600:

If fi(x

(%) )
(x) > )
If f1(x)>=3831 and f5(x) = 3818, then x is good
(x) )
)

> 3828 and fy(x) = 3827, then x is good

rule 7_600:
rule 8 600:
rule 9 600:

If fo(x) < 3727, then x is bad (born(rule 7_.600) =51),
) < 3759, then x is bad (born(rule 8 600)

If f1(x)< 3790, then x is bad (born(rule 9 600) =126),

rule 10_600:

rule 11 600:
rule 12 600:

rule 13 600:
rule 14_600:
rule 15 600:
rule 16 600:

If fa(x

(born(

(born( )=
(born(rule 3_600) =151)
(born(rule 4 600) =151)
(born(rule 5.600) = 176)
(born(rule 6 600) =576)

=76), | x=[3828, 3827]

matches red rules

If fo(x) < 3785, then x is bad (born(rule 10 600)=126)
& gets max score

If f1(x) < 3800, then x is bad (born(rule 11 600)=151)

If f5(x) < 3803, then x is bad (born(rule 12_.600)=151)

If £,(x) < 3805, then x is bad (born(rule 13.600)=176) | It is also the best
If fo(x) <3794, then x is bad ( rule 14 600)=176) | W.r.t. the true

If f1(x) < 3818, then x is bad (born({rule 15 600)=576) | user’s value funct.
If f5(x) < 3819, then x is bad (born(rule 16_600)=1576)
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Summary and conclusions
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Summary and conclusions

m  Robust Ordinal Regression is a constructive way of learning DM’s preferences
m It underlines the evolution of OR and DA towards the Al paradigm of learning

m It is also a representative of the European School of Decision Aiding,

because it goes along with the recommendation of its founder:

Bernard Roy (1934-2017): ,MCDA must be based
on models that are co-constructed through
interaction with the decision maker.

The co-constructed model must be a tool for
looking deeper into the subject, exploring,

interpreting, debating and even arguing.” (2010)
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