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The changing the face of AI: the rise of deep learning

• Neural networks timeline
1940s First proposed
1998 Convolutional nets
2006 Deep nets trained
2011 Rectifier units
2015 Vision breakthrough
2016   Win at Go
2019   Turing Award

• Enabled by
− Big data 
− Flexible, easy to build models
− Availability of GPUs
− Efficient inference



Deep learning with everything…



The stakes are rising even higher…

BRAIN-COMPUTER INTERFACE 
WILL MAKE PEOPLE 

TELEPATHIC, SCIENTISTS SAY
People will communicate 'not only without 

speaking but without words –
through access to each other's thoughts 

at a conceptual level’

Neuralink says learning to use the device is “like learning to touch type or play the piano”

Brain implants approved…



Should we worry about AI safety?

• Neural networks are unstable to adversarial perturbations!

Red light classified as green
after one pixel change                Physical attack                Real traffic sign

• Need safety assurance, possibly new failure modes

Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et al, In Proc. TACAS, 2018.



The bumpy road to self-driving cars…

• Level 5 autonomous driving promised by 2020, but…

• Now manufacturers scaling back autonomy…
• San Francisco robotaxis have had a mixed reception               
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But isn’t bumpy for all new technologies?

• Red flag traffic law: safety regulation for automobiles in late 19th century
• Both vehicles and regulation need to be fit for purpose for us to trust them…
• … especially in complex urban environments
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To trust AI, or not to trust…

• What is trust?
− willingness to depend on and be vulnerable to the 

actions of another party
− subjective, multifaceted concept
− can be quickly lost, difficult to rebuild

• Trust what/who? who is responsible?
− need accountability, appropriate regulation, evidence

• Trust is guides reliance, avoids ovrr-trust
 and is increased through sound engineering: 
 rigour, standards, compliance, safety assurance 
 processes
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TRUST is key factor to 
forming relationships



An AI safety problem…

• Complex scenarios
- goals and perception
- autonomy
- situation awareness
- context (social, regulatory)

• Safety-critical, need guarantees 

• Should failure occur, 
− evidence is needed
− accountability must to be established



This lecture: focus on trust via rigorous engineering

• Brief recap of robustness for neural networks and highlighting formal 
verification methodologies being developed to provide provable guarantees
− focus on adversarial perturbations
− broad range of applications, not just image classification
− robustness affects safety, fairness, correctness, conformance, etc

• A snapshot of recent directions beyond robustness to (bounded) perturbations 
in data-rich settings
− robustness guarantees for explanations

• Perspective on future challenges
• Conclusions and future directions

When to Trust AI: Advances and Challenges for Certification of Neural Networks. Kwiatkowska and Zhang, Proc 
FedCSIS 2023



Software verification offers provable guarantees

• Modelling = rigorous, mathematical abstraction
• Verification = proof that the model satisfies specification
• Synthesis = correct-by-construction model from specification
• Automated = algorithmic, implemented in software

ModelProgram

void add(Object o) {
 buffer[head] = o;

 head = (head+1)%size;
}

Object take() {
 …

 tail=(tail+1)%size;
 return buffer[tail];

}

0.4
0.5

0.1



Formal verification for neural networks

• Neural network models more challenging
− black box, lacks interpretability
− programming by pattern matching, not logic
− corner cases are unseen examples, not 

missed conditions
− non-linearity and scale
− accuracy can be misleading

• Formal, automated verification 
− can provide guarantees 
− enables certification

• testing insufficient
− and correct-by-construction

synthesis (of models)

Image classifier is a function f: Rn → {c1,…ck}
Learnable weights and bias

Approximates human perception from M 
training examples

Safety Verification of Deep Neural Networks. CAV 2017 keynote



How to specify correct behaviour for a neural network?

• For image classification, similar inputs should be mapped to the same class

• Problem-specific similarity measures needed to capture key features 
− for images, Mahalanobis distance challenging to work with
− typically work with Lp norms as a proxy

• Need semantic robustness…
𝑇ℎ𝑒 𝐾𝑖𝑛𝑔 𝑖𝑠 𝑁𝑎𝑘𝑒𝑑: on the Notion of Robustness for Natural Language Processing. La Malfa et al, Proc AAAI 2022



Safety of classification decisions

• Safety assurance process is complex
• Here focus on decision safety as part of such a process

− local robustness, focus on a specific point x… 

• Assume given
− trained neural network f : Rm → {c1,…ck} 
− support region η for x
− distance function, e.g. L2, L∞

• Define safety as invariance (stability) of classification decision over η
− i.e. ∄y ∈ η such that f(x) ≠ f(y)

• Also wrt family of safe manipulations, e.g. a group of operations
− e.g. scratches, weather conditions, camera angle, etc

x

y

η

Safety Verification of Deep Neural Networks. CAV 2017 keynote



Maximum safe radius

• Measure of safety/robustness, can be average over input distribution
• Define maximum safe radius (MSR) 

− MSR(𝑥) = inf {𝜀 > 0  | ∄ adversarial example at distance 𝜀} 
• i.e. the minimum distance from 𝑥

to the decision boundary
x

y

η

!



Maximum safe radius

• Measure of safety/robustness, can be average over input distribution
• Define maximum safe radius (MSR) 

− MSR(𝑥) = inf {𝜀 > 0  | ∄ adversarial example at distance 𝜀} 
• i.e. the minimum distance from 𝑥

to the decision boundary
• Difficult to compute, so lower/upper bound

• Intuitively, 
− unsafe: finding an adversarial example at 𝜀𝑢𝑏

gives an upper bound on MSR
− safe: ruling out adversarial examples for all 0 ≤ 𝜀 ≤ 𝜀𝑙𝑏

gives a lower bound on MSR

• But the region contains infinitely many points!

x

y

η
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Search-based safety verification

• Take as a specification an input x and region η (and family of manipulations)
− focus on safety wrt a set of manipulations, e.g. bounded perturbations
− exhaustively search the region for misclassifications

• Challenges
− high dimensionality, nonlinearity, infinite region, huge scale

• Automated verification (= ruling out adversarial examples)
− need to ensure finiteness of search, e.g. Lipschitz
− guarantee of decision safety if adversarial example not found

• Falsification (= searching for adversarial examples)
− good for attacks, no safety guarantees



Searching for adversarial examples…

• Input space for most neural networks is high-dimensional and non-linear

• Progress through
− apply feature-based exploration to reduce dimensionality
− rely on Lipschitzness of neural networks
− smart search via a two player game and Monte Carlo Tree Search

• Image of a tree has 
4,000 x 2,000 x 3 
dimensions = 
24,000,000 
dimensions

• We would like to find a 
very small change in 
these dimensions



MSR robustness in action: image classification

• Consider robustness wrt pixel manipulations
• Convergence of lower and upper bounds on maximum safe radius

A game-based approximate verification of deep neural networks with provable guarantees. Wu et al, Theor. 
Comput. Sci. 807: 298-329 (2020).



MSR not just for images, also videos…

• Guarantees against perturbations of optical flow, extracted from consecutive frames

Video frame

Optical flow

Unsafe 
perturbation

Safe 
perturbation                                                                                
  

Robustness Guarantees for Deep Neural Networks on Videos. Wu et al, In Proc. CVPR 2020.

Convergence of lower/upper bounds 
CNN+RNN architecture (VGG16+LSTM, 
UCF101 dataset)

Many natural distortions: brightness 
change, angular rotation, …



And MSR for text classification…

dell        exits      lowend      china    consumer      pc       market    [..] 

MCTS ATTACKS - AG DATASET

parsons   misses    founds        u.s.       benefits    parsons    wall
ORIGINAL      :

REPLACEMENT  :

AG Test Set n° 47, Model Prediction = CLASS "sci-tech", Confidence = 0.53, Words Perturbed = 47/48

dutch    retailer   beats        local       download      market    [..] 
     -             -              -                -              -                    -

ORIGINAL      :
REPLACEMENT  :

AG Test Set n° 12, Model Prediction = CLASS "sci-tech", Confidence = 0.86, Words Perturbed = 0/42

ranked  player  who  has   not   won   a   major   champ.   since   his    [..] 
      -     replacements  -      -     -          -      -        -     wrestling    -       joke

ORIGINAL      :
REPLACEMENT  :

AG Test Set n° 49, Model Prediction = CLASS "sport", Confidence = 0.75, Words Perturbed = 3/33

green: meaningful replacement     red: replacement (grammatically inconsistent)    - : no replacement found

 

• Consider robustness wrt word substitution, e.g. replacement with a synonym

• NB in some cases no replacement found to change classification

Assessing Robustness of Text Classification through Maximal Safe Radius Computation. La Malfa et al, Proc 
EMNLP 2020.



Evaluating safety-critical scenarios: Nexar

• Using the game-based method 
we were able to reduce the 
accuracy of the network from 
95% to 0%

• On average, each input took 
less than a second to 
manipulate (.304 seconds)

• On average each image was 
vulnerable to 3 pixel changes

• Part of safety assurance
Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et al, Proc TACAS 2018



Training vs testing vs verification

Credits: Cleverhans, http://www.cleverhans.io/

http://www.cleverhans.io/


Alternative approaches: reachability analysis

• Rather than search, consider input-output relationship and compute (or 
overapproximate) the reachable values
− for x ∈ η, compute maximum/minimum value of f(η)

• Methods include exact/approximate
− constraint solving/SMT, e.g., Reluplex
− convex relaxation, e.g., linear bound 

propagation, as in CROWN
− abstract interpretation, e.g., DeepPoly
− global optimisation, under assumption of 

Lipschitz continuity, e.g., DeepGO
• Gives provable guarantees

− best/worst case confidence values
− can average over input distribution

• Hard problems, typically NP-completeness, scaling an issue



How good are MSR guarantees?

• Game-based method practical, enables robustness evaluation
− model-agnostic and versatile, can be applied to a range of tasks, such as text 

classification, video processing, etc
− can be configured with different norms/metrics 
− applicable to continuous (via convex relaxation) and discrete search spaces

•  but
− also need to consider explainability
− robustness to perturbations too limiting, need robustness to interventions
− need optimality of learnt policies, not just robustness guarantees
− ideally, want to learn robust models

• More effort needed to study topics beyond MSR robustness

On the Hardness of Robust Classification. Gourdeau et al, In Proc. NeurIPS 2019, extended JMLR, 22(273) 2021
When are Local Queries Useful for Robust Learning? Gourdeau et al, In Proc. NeurIPS 2022



Beyond MSR: explainability and robustness

• Deep learning models are black-box and explaining their decisions helps
• Explanations are sets of features that justify the network decision

− various tools (LIME, Anchors, ABE, etc) exist
• but explanations lack robustness

• Propose optimal robust explanations (OREs)
− an ORE is a sufficient reason behind the model’s 

prediction
− that is robust, i.e., guaranteed to be invariant 

to perturbations to all the other features
− and optimal wrt user-defined function
− consider different norms (Lp, k-NN box closure) 

for bounding box and uniform/non-uniform cost
functions

On Guaranteed Optimal Robust Explanations for NLP Models. La Malfa et al, In Proc. IJCAI 2021.



Examples of robust explanations, for sentiment analysis

• Can produce compact robust explanations, in general

• Accurate models are over-sensitive to polarized terms or trivial tokens 

On Guaranteed Optimal Robust Explanations for NLP Models. La Malfa et al, In Proc. IJCAI 2021.



Challenges for AI

• To imbue trust in AI, rigorous verification methodologies can help
• Some successes beyond simplistic MSR robustness, but many limitations

• To make progress, consider:
• Beyond supervised robustness: need robustness evaluation for unsupervised or 

semi-supervised setting
• Compositionality: formulate a compositional framework based on assume-

guarantee interfaces
• Scalability, efficiency and precision: needs to be improved
• Calibrating uncertainty: the models need to be able to say when they don’t 

know, such as Bayesian neural networks 
• Reasoning vs statistics: neural network learn statistical features of input data 

and lack (deductive) reasoning ability, need smart integration of the two 
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Summarising, much excitement about AI deployment!



Continuing concerns about risks and failures…

IBM’s “Watson for 
Oncology” Cancelled After 

$62 million and Unsafe 
Treatment 

RecommendationsApple’s Face ID Defeated 
by a 3D Mask

Amazon bolsters Alexa 
privacy after user trust 

takes a hit



AI is a tool but will not solve all our problems…
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Concluding remarks

• Range of techniques developed, active research programmes in the AI, learning 
and formal verification communities

• Despite progress, major challenges remain
− complex scenarios and properties, ambiguity, scalability, human involvement!
− foundational understanding needed
− neuro-symbolic models
− robust learning for correct-by-construction models and policies

• Need integrated processes for validation and safety assurance, not just 
(probabilistic) verification

• Deployment in the wild poses accountability challenges
− aligning predictive goals with outcomes, e.g., measuring potential for defaulting
− reason giving, or explainability of decisions
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